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Section 0: Introduction

The purpose of this paper is to study in greater detail the arithmetic Kodaira-
Spencer morphism of an elliptic curve introduced in [Mzk1], Chapter IX, in the gen-
eral context of the Hodge-Arakelov theory of elliptic curves, developed in [Mzk1-3].
In particular, after correcting a minor error (cf. Corollary 1.6) in the construction of
this arithmetic Kodaira-Spencer morphism in [Mzk1], Chapter IX, §3, we define (cf.
§2.1) a slightly modified “Lagrangian” version of this arithmetic Kodaira-Spencer
morphism which has the following remarkable properties:

(1) This Lagrangian arithmetic Kodaira-Spencer morphism is free
of Gaussian poles (cf. Corollary 2.5).

(2) A certain portion of the reduction modulo p of this Lagrangian
arithmetic Kodaira-Spencer morphism may be naturally iden-
tified with the usual geometric Kodaira-Spencer morphism (cf.
Corollary 2.7).

We recall that property (1) is of substantial interest since it is the Gaussian poles
that are the main obstruction to applying the Hodge-Arakelov theory of elliptic
curves to diophantine geometry (cf. the discussion of [Mzk1], Introduction, §5.1,
for more details). On the other hand, property (2) is of substantial interest in that
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it shows quite definitively that the analogy asserted in [Mzk1], Chapter IX, between
the arithmetic Kodaira-Spencer morphism of the Hodge-Arakelov theory of elliptic
curves and the usual geometric Kodaira-Spencer morphism of a family of elliptic
curves is not just philosophy, but rigorous mathematics! (cf. the Remark following
Corollary 2.7 for more details). In fact, both properties (1) and (2) are essentially
formal consequences of a property that we refer to as the “crystalline nature of
the Lagrangian Galois action” (cf. Theorem 2.4). Interestingly, the theory of §2 of
the present paper makes essential use not only of the theory of [Mzk1], but also of
[Mzk2], [Mzk3].

Unfortunately, however, this Lagrangian arithmetic Kodaira-Spencer morphism,
which is based on a certain “Lagrangian Galois action,” can only be defined when
there is a natural (rank one) multiplicative subspace (i.e., “weight 1” subspace) of
the Tate module of the elliptic curve in question. Since such a subspace is well-
known to exist in a formal neighborhood of infinity (of the compactified moduli
stack of elliptic curves), we work over such a base in §2. Ultimately, however, one
would like to carry out this construction for elliptic curves over number fields. In
§3, 4, we discuss a certain point of view that suggests that this may be possible
— cf. especially, §4, “Conclusion.” It is the hope of the author to complete the
construction motivated in §3,4 in a future paper.

Notation and Conventions:

We will denote by (Mlog

1,0)Z the log moduli stack of log elliptic curves over Z

(cf. [Mzk1], Chapter III, Definition 1.1), where the log structure is that defined
by the divisor at infinity. The open substack of (M1,0)Z parametrizing (smooth)
elliptic curves will be denoted by (M1,0)Z ⊆ (M1,0)Z.

Acknowledgements: The author would like to thank A. Tamagawa and T. Tsuji for
stimulating discussions of the various topics presented in this manuscript.

Section 1: Galois Actions on the Torsion Points

In this §, we study various Galois actions on the space of functions on the set
of torsion points of an elliptic curve. In particular, we observe that these actions
give rise to a natural action of the “algebraic fundamental groupoid” of the base
of a family of elliptic curves on the scheme of torsion points over this base. This
action allows us to correct an error made in [Mzk1], Chapter IX, in the definition
given there of the arithmetic Kodaira-Spencer morphism.

Let Slog be a fine noetherian log scheme whose underlying scheme S is con-
nected and normal. Write US ⊆ S for the open subscheme where the log structure
is trivial. In the following discussion, we shall assume that US �= ∅. Next, let us
assume that we are given a log elliptic curve (cf. §0, Notations and Conventions)

C log → Slog
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(whose associated one-dimensional semi-abelian scheme we denote by E → S) and
a positive integer d ≥ 1 which is generically invertible on S (i.e., invertible on a
schematically dense open subscheme of S). Next, let us write

UT [d−1] ⊆ E|US [d−1]

(where US [d−1] def= US ⊗Z Z[d−1]) for the kernel of the finite, étale morphism [d] :
E|US [d−1] → E|US [d−1] of degree d2 (given by multiplication by d). Thus, UT [d−1] →
US [d−1] is finite étale of degree d2. Let us write

T → S

for the normalization of S in UT [d−1], UT
def= T |US

(so UT [d−1] = UT ⊗Z Z[d−1]).
Also, let us assume that we are given a connected, normal scheme Z over S such
that if we write UZ

def= Z|US
, UZ [d−1] def= UZ ⊗Z Z[d−1], then UZ [d−1] → US [d−1] is

finite étale and Galois; UZ [d−1] → US [d−1] dominates every connected component
of UT [d−1]; and Z is the normalization of S in UZ [d−1].

Next, we consider étale fundamental groups. Write

ΠS

for the fundamental group π1(US [d−1]) (for some choice of base-point, which we
omit in the notation since it is irrelevant to our discussion). Then since UZ [d−1] →
US [d−1] is Galois, it follows that ΠS acts naturally on UZ [d−1], hence also on Z
(over S). In particular, ΠS acts naturally on the module of d-torsion points

M
def= MorS(Z, T )

(where we observe that, as an abstract Z-module, M ∼= (Z/dZ)2). In the following
discussion, we shall think of the action of ΠS on Z as an action from the right, and
the action of ΠS on OZ , M as an action from the left.

Next, let us us consider the OZ-algebra

F def= Func(M,OZ)

of OZ-valued functions on the finite set M . Then observe that ΠS acts on F in
several different ways, e.g., via the action of ΠS on M , via the action of ΠS on OZ ,
etc.

Definition 1.1. We shall refer to the OZ-linear (respectively, semi-linear, relative
to the action of ΠS on OZ) action of ΠS from the right (respectively, left) on F
induced by the action of ΠS on M (respectively, OZ) as the point-theoretic action
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(respectively, value-theoretic action) of ΠS on F . We shall refer to the OZ-semi-
linear action of ΠS on F from the left given by composing the value-theoretic action
with the inverse of the point-theoretic action (i.e., if σ ∈ ΠS , and φ ∈ F , then σ
maps φ to the function M 
 m �→ σ(φ(σ−1m))) as the diagonal action of ΠS on
F . We shall abbreviate the term “point-theoretic action” (respectively, “value-
theoretic action”; “diagonal action”) by the term P-action (respectively, V-action;
D-action).

Proposition 1.2. There is a natural inclusion ι : OT ↪→ F of OS-algebras which
induces an isomorphism of OT onto the subalgebra of F of ΠS-invariants with
respect to the D-action. Moreover, this inclusion induces an isomorphism

(OT ⊗OS
OZ)norm ∼→F

(where the superscript “norm” denotes the normalization of the ring in parentheses)
which is ΠS-equivariant with respect to the tensor product of the trivial action of
ΠS on OT and the natural action of ΠS on OZ on the left, and the D-action of
ΠS on F on the right.

Proof. It is a tautology (cf. the definition M
def= MorS(Z, T )) that elements of M

define OS-algebra homomorphisms OT → OZ . Thus, if we take the direct product
of these various homomorphisms, then we get an OS-algebra homomorphism

ι : OT → F

(cf. the definition of F — i.e., F def= Func(M,OZ)). Moreover, it is a tautology that
OT maps into the subalgebra of ΠS-invariants of F relative to the D-action. Since
OT and F are both normal algebras, in order to verify the remaining assertions
of Proposition 1.2, it suffices to verify that these assertions hold over US [d−1].
To simplify notation, we assume (just for the remainder of this proof) that S =
US [d−1].

Thus, T → S and Z → S are finite étale, so, by (Galois) étale descent (with
respect to the morphism Z → S), it follows that the ΠS-invariants of F form
an OS-algebra OT ′ , whose spectrum T ′ over S is finite étale over S. Moreover,
T ′ → S factors (cf. the discussion of the preceding paragraph) through T . Thus,
since T ′ and T are both finite étale of degree equal to the cardinality of M (i.e.,
d2) over S, we obtain that T ′ = T , as desired. The fact that the induced morphism
OT ⊗OS

OZ
∼→F is an isomorphism then follows from elementary properties of étale

descent. This completes the proof. ©

Next, we would like to use the V-action of ΠS on F to construct “some sort
of group action” on F which descends to an action on OT . If, for instance, the
V-action of ΠS on F were equivariant with respect to the D-action of ΠS on F ,
then the V-action itself would define an action of ΠS on F that descends to an
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action on OT . In fact, however, this sort of equivariance does not hold in the naive
sense, but only in the following “twisted sense”:

First, let us define the profinite group with ΠS-action ΓS as follows: We take
the underlying profinite group of ΓS to be ΠS itself. The ΠS-action on ΓS is defined
to be the action given by: σ(γ) def= σ ·γ ·σ−1 (for σ ∈ ΠS , γ ∈ ΓS). Next, we endow
F with the ΓS-action defined by thinking of ΓS as ΠS and using the V-action of
ΠS on F (cf. Definition 1.1). Then we have the following:

Proposition 1.3. The ΓS-action on F is compatible with the ΠS-actions on ΓS

and F (where we think of ΠS as acting on F by the D-action).

Proof. Indeed, if σ ∈ ΠS , γ ∈ ΓS , φ ∈ F , m ∈ M , then:

(
σD{γ(φ)}

)
(m) = σ · {γ(φ)}(σ−1 · m)

= σ · γ · φ(σ−1 · m)

= σ · γ · σ−1 · σ · φ(σ−1 · m)

= σ(γ) · σ · φ(σ−1 · m)

= σ(γ) · {σD(φ)}(m)

=
{
σ(γ) ·

(
{σD(φ)}

)}
(m)

(where the superscript D denotes the D-action of the group element bearing the
superscript). This completes the proof. ©

Let us write Gal(Z/S) for the Galois group of the Galois covering UZ [d−1] →
US [d−1]. Then by forming the quotient of Z by the action of Gal(Z/S) in the sense
of stacks, we obtain an algebraic stack Ssk

Z , together with morphisms

Z → Ssk
Z → S

where the first morphism is Galois, finite étale (with Galois group Gal(Z/S)), and
the second morphism is an isomorphism over US [d−1]. If we let Z range over all
connected Galois, finite étale coverings of S, the inverse limit of the Z (respectively,
Ssk

Z ) thus defines a “pro-scheme” S̃ (respectively, “pro-algebraic stack” Ssk) over S,
together with morphisms:

S̃ → Ssk → S

(where the first morphism is “Galois, profinite étale” (with Galois group ΠS) and
the second morphism is an isomorphism over US [d−1]). Moreover, by étale descent,
the “profinite group with ΠS-action” ΓS defines a profinite étale group scheme Γsk

S

over Ssk.
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Definition 1.4. We shall refer to Γsk
S as the algebraic fundamental groupoid of

Slog.

Note that since Z → Ssk
Z is finite (Galois) étale, the D-action of ΠS on Spec(F)

(where “Spec” is to be understood as being taken with respect to the structure of
OZ-algebra on F) defines descent data for Spec(F) with respect to Z → Ssk

Z (hence,
a fortiori, with respect to S̃ → Ssk). We shall denote the resulting descended object
over Ssk by:

T sk → Ssk

Note that over US [d−1], we have T sk|US [d−1] = T |US [d−1] (by Proposition 1.2).

Corollary 1.5. The action of ΓS on F descends to an action of the algebraic
fundamental groupoid Γsk

S on T sk.

Proof. This follows immediately from Proposition 1.2, 1.3. ©

Remark. The terminology of Definition 1.4 may be justified as follows: First,
let us recall the well-known analogy between algebraic fundamental groups (such
as ΠS) and the usual topological fundamental groups of algebraic topology. This
analogy gives us the freedom to phrase our justification in the language of topological
fundamental groups. Thus, let X be a topological manifold. Note that for each point
x ∈ X, we obtain (in a natural way) a group:

x �→ π1(X,x)

i.e., the fundamental group with base-point x. This correspondence defines a local
system of groups on X, which is known (in algebraic topology) as the fundamental
groupoid of X. On the other hand, there is a well-known equivalence of categories
between local systems of groups on X and groups G equipped with an action
of π1(X,x) (given by associating to such a local system its fiber at x, together
with the “monodromy action” of π1(X,x)). Moreover, it is an easy exercise to
check that, relative to this equivalence of categories, the fundamental groupoid
corresponds to the “group with π1(X,x)-action” defined by letting π1(X,x) act
on itself via conjugation (cf. the definition given above for the ΠS-action on ΓS).
Thus, in summary, one may regard the object Γsk

S as the algebraic analogue of the
fundamental groupoid. This justifies the terminology of Definition 1.4.

Remark. One other interesting observation relative to the appearance of the al-
gebraic fundamental groupoid (cf. Definition 1.4 — i.e., as opposed to group) in
the correct formulation of the arithmetic Kodaira-Spencer morphism (cf. Corollary
1.6 below) is the following. Recall that in the asserted analogy between the arith-
metic Kodaira-Spencer morphism of [Mzk1], Chapter IX, and the usual geometric
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Kodaira-Spencer morphism, the Galois group/fundamental group(oid) of the base
plays the role of the tangent bundle of the base. On the other hand, the tangent
bundle of the base (typically) does not admit a canonical global trivialization, but
instead varies from point to point — i.e., at a given point, it consists of infinites-
imal motions originating from that point. Thus, it is natural that the arithmetic
analogue of the tangent bundle should be not the “static” fundamental group, but
instead the fundamental groupoid, which varies from point to point, and indeed,
at a given point, consists of paths (which may be thought of as a sort of “motion”)
originating from that point.

We are now ready to apply the above discussion to correct an error made in
[Mzk1], Chapter IX, in the definition given there of the arithmetic Kodaira-Spencer
morphism:

In [Mzk1], Chapter IX, Theorem 3.3, and the discussion preced-
ing it, it is falsely asserted that there is a natural action (“with
denominators”) of ΠS on HDR (notation of loc. cit.) arising
from a natural action of ΠS on T → S (notation of the present
discussion).

Although this assertion does indeed hold if the S-scheme T happens to be a disjoint
union of copies of S, in general, it is false. That is to say, the correct formulation
of this assertion is that the “twisted object” Γsk

S acts on T sk (not that ΠS acts on
T ).

Corollary 1.6. (Correction to Error in [Mzk1], Chapter IX, §3) The
phrase “natural action of ΠS on ... HDR” in [Mzk1], Chapter IX, Theorem 3.3,
should read

“natural action of Γsk
S on ... HDR|Ssk”

(where “|skS ” denotes the pull-back via the morphism Ssk → S), and the divisor of
possible poles “[η

⋂
(dE)] + V (4)” should read

[η
⋂

(dE)] + V (d)

In particular, the resulting “arithmetic Kodaira-Spencer morphism” κarith
E :

ΠS → Filt(HDR)(S) ((erroneous) notation of [Mzk1], Chapter IX, §3) should in
fact be thought of as a morphism

κarith, sk
E : Γsk

S → Filt(HDR)|Ssk

of sheaves on the étale site of Ssk.

Proof. It remains only to remark that the reason for the divisor “V (d)” (i.e., the
zero locus of the regular function determined by the integer d) is that the integral
structure on the pull-back to Z (notation of the present discussion) of O

dE differs
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from that of F (cf. the notation “norm” appearing in Proposition 1.2) by a factor
which is bounded by the different of the algebra O

dE . Moreover, the fact that this
different divides d follows from the fact that multiplication by d on an elliptic curve
induces multiplication by d on the differentials of the elliptic curve. ©

Remark. Thus, in summary, what is done in [Mzk1], Chapter IX, §3, is literally
correct when T → S happens to be a disjoint sum of copies of S (a condition which
may be achieved by base-change). In general, however, there is a certain “twist”
that must be taken into account, but which was overlooked in the discussion of
[Mzk1], Chapter IX.

Section 2: Lagrangian Galois Actions

In this §, we study the Galois action on the torsion points of an elliptic curve,
along with the resulting “arithmetic Kodaira-Spencer morphism” (cf. §1) under the
assumption that this Galois action preserves a “rank one multiplicative submodule
” of the module of torsion points. In this situation, we show that the resulting
“Lagrangian Galois action” is defined without Gaussian poles, and, moreover, that
a “certain piece” of the resulting arithmetic Kodaira-Spencer morphism coincides
with the classical Kodaira-Spencer morphism (cf. §2.2). This further strengthens
the analogy discussed in [Mzk1], Chapter IX, between the arithmetic (or “Galois-
theoretic”) Kodaira-Spencer morphism and the classical (“geometric”) Kodaira-
Spencer morphism.

§2.1. Definition and Construction

In this §, we maintain the notation of §1. Moreover, we assume that we are
given a ΠS-submodule Mμ ⊆ M whose underlying Z/dZ-submodule is free of rank
one. Thus, we obtain an exact sequence of ΠS-modules

0 → Mμ → M → M et → 0

(where M et is defined so as to make this sequence exact). Thus, restricting OZ-
valued functions on M to Mμ gives rise to a surjection

F = Func(M,OZ) � Fμ def= Func(Mμ,OZ)

of OZ-algebras. Observe that the V-action (cf. Definition 1.1) of ΠS on F mani-
festly preserves this surjection, so we get a natural V-action of ΠS on Fμ. Since,
moreover, we are operating under the assumption that ΠS preserves the submodule
Mμ ⊆ M , it thus follows that the P- and D-actions (cf. Definition 1.) of ΠS on
F also preserve this surjection, so we also get natural P- and D-actions of ΠS on
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Fμ. In particular, (cf. Proposition 1.2) taking the spectrum (over S) of the ΠS-
invariants of Fμ with respect to the D-action gives rise to a scheme Tμ together
with a morphism

Tμ → T

which is a closed immersion over US [d−1]. (Note that since the operation of taking
ΠS-invariants is not necessarily right exact, it is not clear whether or not Tμ → T
is a closed immersion over S.)

Next, let us suppose that we are given a splitting

MH ⊆ M

of the surjection of modules M � M et (i.e., a submodule MH ⊆ M such that
the morphism MH → M et is bijective), which is not necessarily preserved by ΠS .
Even if MH is not preserved by ΠS , however, since Mμ ⊆ M is preserved by ΠS ,
it follows that an element σ ∈ ΠS will always carry MH ⊆ M to another splitting
MHσ ⊆ M of the surjection M � M et.

Next, we return to the “de Rham point of view,” and consider sections of
line bundles on the universal extension of E. Also, for simplicity, we assume from
now on that S is Z-flat, and that d is odd. Then we would like to consider the
Hodge-Arakelov Comparison Isomorphism (cf. [Mzk1], Introduction, Theorem A),
so, in the following discussion, we will use the notation of [Mzk1], Introduction,
and [Mzk3], §9. (Here, we recall that certain minor errors in [Mzk1], Introduction,
Theorem A were corrected in [Mzk3], §9, Theorem 9.2.) Thus, we assume that we
have been given an integer m that does not divide d, together with a torsion point

η ∈ E∞,S(S∞)

of order precisely m which defines a metrized line bundle Lst,η on E∞,S (cf. [Mzk1],
Chapter V, §1). Here, we recall that S∞ is the stack (in the finite, flat topology)
obtained from S by gluing together US (“away from infinity”) to the profinite
covering of S (“near infinity”) defined by “adjoining a compatible system of N -th
roots of the q-parameter” (as N ranges multiplicatively over the positive integers).
Over S∞, we have the group object

E∞,S → S∞

which is equal to E → S over US (“away from infinity”), and whose “special fiber”
consists of connected components indexed by Q/Z, each of which is isomorphic to
a copy of Gm — cf. the discussion of [Mzk1], Chapter V, §2, for more details. For
simplicity, we shall also assume that n

def= 2m is invertible on S. In the following
discussion, we shall simply write L for Lst,η. Thus, in particular, over US :
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L|US
= OE(d · [η])|US

Also, let us write

Ed,Z → Z

for the object which is equal to EZ
def= E ×S Z over UZ , and, “near infinity,” is the

pull-back to Z of the object “Ed” (cf. [Mzk1], Chapter IV, §4, where we take “N”
of loc. cit. to be d). (In words, this object “Ed” is the complement of the nodes of
the unique regular semi-stable model of the Tate curve (with q-parameter “q”) over
the base Z[[q

1
d ]].) Then the object “E∗

[d],et → E” of [Mzk3], §9, defines an object

E∗
[d],et,Z → Ed,Z

(which, over (UZ)Q, may be identified with the universal extension E† → E of E)
over Ed,Z . Indeed, the discussion of [Mzk3], §9, applies literally over UZ ; “near
infinity,” the fact that we get an object over Ed,Z follows from the fact that the
integral structure in question, i.e., “

(
d·(T−(iχ/2m))

r

)
” (in the notation of [Mzk3], §9)

is invariant with respect to the transformations T �→ T + j
d , ∀j ∈ Z.

Note that L has an associated theta group (cf. [Mzk1], Chapter IV, §1, §5, for
a discussion of theta groups) GZ over Z which fits into an exact sequence:

1 → (Gm)Z → GZ → dEZ → 1

(where dEZ (⊆ Ed,Z) → Z is the finite flat group scheme of d-torsion points). Let
us suppose that the submodules Mμ,MH ⊆ M arise from the restriction to UZ [d−1]
of finite flat group schemes

Gμ
Z ,HZ ⊆ dEZ

over Z such that the resulting morphism Gμ
Z ×Z HZ → dEZ is an isomorphism of

group schemes. Thus, (cf. Proposition 1.2) we have a natural inclusion

OGμ
Z

↪→ Fμ

of finite OZ-algebras, which is an isomorphism over UZ [d−1]. In the following
discussion, we also assume that Gμ

Z has been chosen so that the subalgebra OGμ
Z

↪→
Fμ is preserved by the various actions (i.e., V-, P-, D-) of ΠS on Fμ. Finally, let
us assume that we are given a lifting

HZ ⊆ GZ
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of HZ (i.e., HZ
∼→HZ via GZ → dEZ). (Thus, HZ is a “Lagrangian subgroup” (cf.

[MB], Chapitre V, Définition 2.5.1) of the theta group GZ .) In particular, we get a
natural action of HZ

∼= HZ on L.

In the following discussion, we will always denote (by abuse of notation) struc-
ture morphisms to S, Z, E∞,S by f (cf. the conventions of [Mzk1]). We would like
to consider the push-forward

VL
def= f∗(LE∗

[d],et,Z
)

of the pull-back LE∗
[d],et,Z

of the metrized line bundle L to E∗
[d],et,Z . (Here, we

take the integral structure of this push-forward “near infinity” to be the unique
GZ-stable integral structure determined by the “ζCG

r ” — cf. [Mzk1], Chapter V,
Theorem 4.8; the discussion of [Mzk3], §4.1, 4.2.) Thus, VL is a quasi-coherent sheaf
on Z. Also, often we would like to consider the filtration F r(VL) ⊆ VL consisting
of sections whose “torsorial degree” is < r. (Here, by “torsorial degree,” we mean
the relative degree with respect to the structure of “relative polynomial algebra”
on OE† over OE (arising from the fact that E† → E is an affine torsor). Since E†

may be identified with E∗
[d],et,Z over (UZ)Q, this definition also applies to sections

of VL.) In particular, we shall write

HDR
def= F d(VL)

for the object which appears in [Mzk1], Introduction, Theorem A (cf. also [Mzk3],
Theorem 9.2). Thus, HDR is a vector bundle of rank d on Z. Finally, observe that
the theta group GZ acts naturally on VL, F r(VL), HDR.

Next, let us observe that (by the assumption that n = 2m is invertible on S)
the d-torsion subgroup scheme dEZ ⊆ Ed,Z lifts (uniquely!) to a subgroup scheme:

dE
∗ ⊆ E∗

[d],et,Z

(Indeed, this follows from the fact that the integral structure used to define E∗
[d],et,Z

is given by “
(
d·(T−(iχ/2m))

r

)
” (in the notation of [Mzk3], §9), an expression which

gives integral values ∈ OS for all T = j
d (for j ∈ Z).) Moreover, we recall from

[Mzk1], Chapter IX, §3, that (since d is odd) we have a “theta trivialization”

L|
dEZ

∼= L|0EZ
⊗OZ

O
dEZ

(where 0EZ
∈ EZ(Z) is the zero section of EZ

def= E×S Z → Z) of the restriction of
L to dEZ ⊆ Ed,Z . Note, moreover, since L is defined over E∞,S (i.e., without base-
changing to Z), it follows that L|0EZ

is, in fact, defined over S∞ (i.e., in other
words, it is defined over S, except that “near infinity,” one may need to adjoin
roots of the q-parameter). In particular, it follows that there is a natural action of
Gal(Z/S) — hence of ΠS (via the surjection ΠS � Gal(Z/S)) — on L0EZ

.
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Thus, by restricting sections of L over E∗
[d],et,Z to dE

∗ ⊆ E∗
[d],et,Z , and com-

posing with the theta trivialization reviewed above, we obtain a morphism:

ΞV : VL → L|0EZ
⊗OZ

O
dEZ

Similarly, if we introduce Gaussian poles (cf. [Mzk1], Introduction, Theorem A,
(3); [Mzk3], Theorem 6.2), we get a morphism:

ΞGP
V : VGP

L → L|0EZ
⊗OZ

O
dEZ

Then the main result of [Mzk1] may be summarized as follows:

Theorem 2.1. (Review of the Main Result of [Mzk1]) Assume that d is
odd and that n

def= 2m is invertible on S. Then restriction of sections of L over
E∗

[d],et,Z to the d-torsion points, composed with the canonical “theta trivialization”
of L over the d-torsion points yields a morphism

ΞV : VL → L|0EZ
⊗OZ

O
dEZ

whose restriction
ΞH : HDR → L|0EZ

⊗OZ
O

dEZ

to HDR
def= F d(VL) ⊆ VL satisfies: (i) ΞH is an isomorphism over UZ ; (ii) if one

introduces Gaussian poles, i.e., if one considers

ΞGP
H : HGP

DR → L|0EZ
⊗OZ

O
dEZ

then ΞGP
H is an isomorphism over Z.

Proof. We refer to [Mzk1], Introduction, Theorem A, especially (2), (3). Note
that the “zero locus of the determinant” is empty because of our assumption that
n is invertible on S. ©

Next, let us observe that it follows from the fact that the morphism Gμ
Z ×Z

HZ → dEZ is an isomorphism of group schemes that the composite

OHZ

dEZ
⊆ O

dEZ
� OGμ

Z

(where OHZ

dEZ
denotes the subalgebra of O

dEZ
of functions which are invariant with

respect to the natural action of HZ on O
dEZ

) is an isomorphism. Thus, by applying
this isomorphism to the various morphisms obtained by taking HZ

∼= HZ-invariants
of the various morphisms of Theorem 2.1, we obtain the following result:
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Corollary 2.2. (Lagrangian Version of the Main Result of [Mzk1])

Assume that d is odd and that n
def= 2m is invertible on S. Then by applying the

isomorphism OHZ

dEZ
⊆ O

dEZ
� OGμ

Z
to the result of taking HZ

∼= HZ-invariants of
the various morphisms of Theorem 2.1, we obtain a morphism

ΞHZ

V : VHZ

L → L|0EZ
⊗OZ

OGμ
Z

whose restriction
ΞHZ

H : HHZ

DR → L|0EZ
⊗OZ

OGμ
Z

to HHZ

DR
def= F d(VHZ

L ) ⊆ VHZ

L satisfies: (i) ΞHZ

H is an isomorphism over UZ ; (ii) if
one introduces Gaussian poles, i.e., if one considers

ΞGP,HZ

H : HGP,HZ

DR → L|0EZ
⊗OZ

OGμ
Z

then ΞGP,HZ

H is an isomorphism over Z.

Proof. This follows from Theorem 2.1, together with the elementary observation
that taking the HZ

∼= HZ-invariants of an HZ
∼= HZ-equivariant isomorphism is

again an isomorphism. ©

Before proceeding, we recall that VHZ

L admits the following interpretation:
Since HZ

∼= HZ acts on Ed,Z ; E∞,S ; E∗
[d],et,Z ; L, we may form the quotients of

these objects by this action. This yields objects (Ed,Z)H , (E∞,S)H , (E∗
[d],et,Z)H ,

(L)H (a metrized line bundle on (E∞,S)H). Then we have:

VHZ

L = f∗{(L)H |(E∗
[d],et,Z

)H
}

(where f as usual denotes the structure morphism to Z) — cf., e.g., [Mzk1], Chapter
IV, Theorem 1.4.

Definition 2.3. The V-, P-, and D-actions of ΠS on Gμ
Z , together with the

isomorphism ΞGP,HZ

H of Corollary 2.2, and the natural action of ΠS on L|0EZ
, define

V-, P-, and D-actions of ΠS on HGP,HZ

DR , which we shall refer to as the Lagrangian
Galois actions on HGP,HZ

DR .

Remark. Thus, unlike the “naive” Galois actions of §1, the Lagrangian Galois
actions depend on the choice of the additional data Mμ, MH.

Remark. Thus, a priori, the Lagrangian Galois actions appear to require the Gauss-
ian poles (i.e., it appears that they are not necessarily integrally defined on HHZ

DR).
In fact, however, we shall see in §2.2 below that (under certain assumptions) the
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Lagrangian Galois D-action has the remarkable property that it is defined with-
out introducing the Gaussian poles. This property is not possessed by the “naive”
(non-Lagrangian) Galois actions of §1.

§2.2. Relation to the Crystalline Theta Object

In this §, we continue to use the notations of §2.1, except that we further
specialize them as follows. Let A be a complete discrete valuation ring of mixed
characteristic (0, p), with perfect residue field. Write K (respectively, k) for the
quotient field (respectively, residue field) of A. In this §, we suppose that S is of
the form:

S = Spec(A[[q
1
N ]])

for some positive integer N prime to d, and that the log structure on S is that
defined by the divisor V (q

1
N ) ⊆ S. Also, we suppose that the given log elliptic

curve C log → Slog is the “Tate curve,” i.e., that it has “q-parameter” equal to
q ∈ OS .

Thus, if we take A sufficiently large, we may assume that Z is of the form:

Z = Spec(A[[q
1

N·d ]])

and that the log structure on Z is that defined by the divisor V (q
1

N·d ) ⊆ Z. Thus,
we obtain a morphism Z log → Slog of log schemes.

Write EZ
def= E×S Z. Thus, EZ → Z is a one-dimensional semi-abelian scheme

over Z. Note that EZ has a unique finite flat subgroup scheme annihilated by d.
This subgroup scheme is naturally isomorphic to μd. We take this subgroup scheme
for our

μd
∼= Gμ

Z ⊆ dEZ ⊆ EZ

(and note that it is easy to see that this Gμ
Z satisfies the condition (cf. §2.1) that

OGμ
Z
⊆ Fμ be preserved by the V-, P-, and D-actions of ΠS on Fμ). Moreover,

since (dEZ)/Gμ
Z is naturally isomorphic to the constant group scheme (Z/dZ)Z , it

is easy to see that, over Z, there exists a finite étale group scheme HZ ⊆ dEZ such
that the natural morphism

Gμ
Z ×Z HZ → dEZ

is an isomorphism of group schemes. Thus, if we write EHZ

def= (Ed,Z)H , then we
see that EHZ

→ Z is a one-dimensional semi-abelian group scheme (i.e., its fibers
are all geometrically connected), and that the natural quotient morphism
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(EZ ⊆) Ed,Z � EHZ

(over Z) has kernel equal to HZ , hence is finite étale of degree d. Finally, we note
that the q-parameter of EHZ

is a d-th root of q. This completes our description of
the specializations of the objects of §2.1 that we will use in the present §.

Next, we would like to relate the present discussion to the theory of connections
in [Mzk3]. To begin with, we recall that L|0EZ

(where 0EZ
∈ EZ(Z) is the zero

section of EZ → Z) is a line bundle on Z equipped with a natural ΠS-action;
moreover, this ΠS-action is derived from the fact that L|0EZ

in fact arises from a
“line bundle on S∞.” Thus, there exists a trivialization

τ : L|0EZ

∼= q−
a

N·d · OZ

(where a is a nonnegative integer < Nd) — i.e., in the terminology of the discussion
of [Mzk3], §5, a rigidification of L at 0EZ

— which is ΠS-equivariant. In the
following discussion, we fix such a “ΠS-equivariant rigidification” τ .

Observe that τ defines, in particular, a logarithmic connection on the line
bundle L|0EZ

which is stable under the action of ΠS . Thus, according to the theory
of [Mzk3], §5, this rigidification gives rise to (logarithmic) connections

∇VL , ∇VHZ

L

on VL, VHZ

L , respectively (cf. [Mzk3], Theorems 5.2, 8.1), which are stabilized
by the action of ΠS . Here, the logarithmic connections are relative to the log
structure of Z log, and all connections, differentials, etc., are to be understood as
being continuous with respect to the (p, q)-adic topology on OZ .

Moreover, since all higher p-curvatures of these connections vanish (cf. [Mzk3],
§7.1, for a discussion of the general theory of higher p-curvatures; [Mzk3], Corollary
7.6, for the vanishing result just quoted), we thus conclude that VL, VHZ

L define
“crystals” on the site

Inf(Z log ⊗ k/A)

of infinitesimal thickenings over A of open sub-log schemes of Z log ⊗ k = Z log ⊗
(A/mA). That is to say, usually, “crystals” are defined on sites of PD-thickenings
(cf., e.g., [BO], §6, for a discussion of this theory), but here, since all of the higher
p-curvatures vanish, we obtain crystals on the site of thickenings which do not
necessarily admit PD-structures. Since the definitions and proofs of basic properties
of such “crystals on Inf” are entirely similar to the divided power case, we leave the
unenlightening details to the reader. Thus, in summary, we may think of the pairs

(VL,∇VL); (VHZ

L ,∇VHZ

L
)
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as crystals on Inf(Zlog ⊗ k/A).

In the following discussion, we will not use the entire group ΠS , but only its
“m-inertia subgroup” Πm

S ⊆ ΠS , defined as follows:

(ΠS ⊇) Πm
S

def= {σ ∈ ΠS | σ(φ) ≡ φ (mod mA · OZ), ∀φ ∈ OZ}

Thus, in particular, one verifies easily that the image Galm(Z/S) of Πm
S in Gal(Z/S)

is a p-group. More precisely, if we write

d = dp · d �=p

(where dp, d �=p are positive integers; dp is a power of p; and d �=p is prime to p),
then one verifies immediately (using the simple explicit structures of S, Z) that the
correspondence

ΠS 
 σ �→ σ(q
1

N·d )/q
1

N·d

defines isomorphisms:

Πm
S � Galm(Z/S) ∼→ (Z/dpZ)(1)⏐⏐� ⏐⏐� ⏐⏐�

ΠS � Gal(Z/S) ∼→ (Z/dZ)(1)

(where the vertical arrows are the natural inclusions, and the horizontal arrows are
defined by the correspondence just mentioned).

Next, let us observe that it follows immediately from the definition of Πm
S that

every σ ∈ Πm
S defines an A-linear isomorphism

σ : Z log ∼→ Z log

which is the identity on Z log ⊗ k. It thus follows from:

(i) the fact that Z log defines a(n) (inductive system of) thickening(s) in the
category Inf(Z log ⊗ k/A); and

(iii) the fact that (VHZ

L ,∇VHZ

L
) forms a crystal on Inf(Z log ⊗ k/A)

that σ induces a σ-semi-linear isomorphism

∫
σ

: V̂HZ

L → V̂HZ

L
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(where “σ-semi-linear” means semi-linear with respect to the action of σ on OZ , and
the “hat” denotes p-adic completion). Here, the justification for the notation “

∫
σ
”

is that this isomorphism is the analogue of the isomorphism obtained in differential
geometry by “parallel transporting” — i.e., “integrating” — sections of V̂HZ

L along
the “path” σ (where we think of σ as an “element of the (algebraic) fundamental
group” ΠS). That is to say, we obtain a natural ΠS-semi-linear action of ΠS on
V̂HZ

L . (In fact, the same holds for “V̂HZ

L ” replaced by “V̂L,” but since this action is

more interesting for V̂HZ

L , we restrict ourselves to the case of V̂HZ

L in the following
discussion.)

Theorem 2.4. (Crystalline Nature of the Lagrangian Galois Action)
The action of ΠS on V̂HZ

L is compatible with ΞHZ

�V (cf. Corollary 2.2; here the “hat”
denotes p-adic completion) and the D-action on Gμ

Z in the following sense: For
σ ∈ ΠS, the following diagram commutes:

V̂HZ

L

Ξ
HZ�V−→ L|0EZ

⊗OZ
OGμ

Z⏐⏐��
σ

⏐⏐�σD

V̂HZ

L

Ξ
HZ�V−→ L|0EZ

⊗OZ
OGμ

Z

(where σD denotes the result of applying σ to OGμ
Z

via the D-action of ΠS on OGμ
Z
).

Proof. This follows from the naturality of all the morphisms involved, together
with the compatibility (cf. [Mzk3], Theorem 6.1) over Gμ

Z of the connection ∇VHZ

L
with the “theta trivialization” reviewed in §2.1. ©

Corollary 2.5. (Absence of Gaussian Poles in the Lagrangian Galois
Action) Relative to the objects of the present discussion, the Lagrangian Galois D-
action of ΠS on HGP,HZ

DR (cf. Definition 2.3) is defined without Gaussian poles,
i.e., it arises from an action of ΠS on HHZ

DR .

Proof. This follows immediately from the commutative diagram of Theorem 2.4,
together with Lemma 2.6 below: Indeed, since the morphism “

∫
σ
” is integral (i.e., in

particular, defined without Gaussian poles), restricting this commutative diagram
to HHZ

DR ⊆ V̂HZ

L (i.e., where “V̂HZ

L ” denotes the “V̂HZ

L ” in the upper left-hand corner

of the diagram) shows that by computing the Lagrangian D-action inside V̂HZ

L and
then applying Lemma 2.6 to the lower horizontal arrow of the diagram, we obtain
the asserted integrality. ©

Lemma 2.6. The image of the morphism ΞHZ

�V (cf. Corollary 2.2) is the same

as the image of its restriction ΞHZ

H to HHZ

DR ⊆ V̂HZ

L .
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Proof. In a word, these two images coincide because both images are equal to
the image of the theta convolution (studied in detail in [Mzk2], cf. especially §10).
Indeed, this is essentially the content of the proof of [Mzk2], Theorem 10.1. In this
proof, only the image of ΞHZ

H — i.e., more concretely, the span of the derivatives
of the theta function “Θ” of order < d — is discussed, and this image is shown to
be the same as that of the theta convolution; but the argument never uses that the
derivatives are of order < d — i.e., the exact same argument shows that the image
of ΞHZ

�V (= the span of the derivatives of the theta function “Θ” of arbitrary order)
is equal to the image of the theta convolution.

For the convenience of the reader, however, we review the argument briefly as
follows: If we write “U” for the standard coordinate on Gm, then the image of ΞHZ

H
(respectively, ΞHZ

�V ) may be identified with the span of the restrictions to μd ⊆ Gm

of the derivatives ( ∂
∂U )jΘ — where

Θ def=
∑
k∈Z

q
1
d ( 1

2 ·k
2+(iχ/n)·k) · Uk · χ(k)

(and χ (a character Z → μn), iχ (an integer) are invariants associated to the torsion
point η) — of order < d (respectively, arbitrary order). On the other hand, a basis
of the functions on μd is given by U0, . . . , Ud−1. If one computes the coordinates
(relative to this basis) of Θ|μd

, one sees that the coefficient of the smallest power
of q appearing in each coordinate is either a root of unity or a root of unity times
a nonzero sum of two n-th roots of unity (cf. [Mzk2], Theorem 4.4, where we take
dord to be 1). Since we have assumed that n is invertible on S (cf. Theorem 2.1),
we thus obtain that this coefficient is always a unit. On the other hand, to give an
element in the span in question is to consider the restriction to μd ⊆ Gm of a series

∑
k∈Z

q
1
d ( 1

2 ·k
2+(iχ/n)·k) · P (k) · Uk · χ(k)

where P (−) is a polynomial (with coefficients in OZ ⊗ Q, but which maps Z into
OZ) of degree < d (respectively, arbitrary degree) in the case of ΞHZ

H (respectively,
ΞHZ

�V ). Thus, in short, the assertion of Lemma 2.6 amounts to the claim that the
span of

{P (k) · qΦ(k) · Uk}k=0,... ,d−1

(for some function Φ : {0, . . . , d − 1} → 1
N ·d · Z) is the same, regardless of whether

one restricts the degree of P ((−) to be < d or not. But this is easily verified. ©

Finally, we observe that:

Theorem 2.4 allows us to relate the “arithmetic Kodaira-Spencer
morphism” arising from the Lagrangian Galois action to the clas-
sical geometric Kodaira-Spencer morphism.
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as follows: Let

Γ ⊆ Galm(Z/S)

be a subgroup of order > 2. Write dΓ
def= |Γ| for the order of Γ. Thus, dΓ �= 1 divides

dp, and we have a natural isomorphism Γ ∼= (Z/dΓZ)(1) (cf. the discussion above
immediately following the definition of Πm

S ). Write

(p · A ⊆) mΓ � A

for the ideal generated by elements of the form 1 − ζ, where ζ is a dΓ-th root of
unity. Note that Γ acts trivially on Z ⊗ (A/mΓ) (mod mΓ). Moreover, we have a
homomorphism

λΓ : μdΓ(A) → mΓ/m2
Γ

given by ζ �→ ζ−1 (mod m2
Γ). Thus, if we think of μdΓ(A) as “(Z/dΓZ)(1)” (which

is naturally isomorphic to Γ), then we see that λΓ defines a homomorphism

δΓ : Γ → mΓ/m2
Γ

which is easily seen (by the definition of the ideal mΓ) to induce an injection Γ ⊗
(Z/pZ) ↪→ mΓ/m2

Γ.

Next, we would like to consider a “certain portion” of the “arithmetic Kodaira-
Spencer morphism” associated to the Lagrangian Galois action, which will turn out
to be related to the classical Kodaira-Spencer morphism. Let γ ∈ Γ. Then since γ
acts on HHZ

DR via the Lagrangian Galois D-action (Definition 2.3, Corollary 2.5), we
see that γ defines a morphism γD : HHZ

DR → HHZ

DR . If we restrict this morphism to
F 1(HHZ

DR), and compose with the surjection HHZ

DR � {HHZ

DR/F 2(HHZ

DR)} ⊗A (A/m2
Γ),

we thus obtain a morphism

F 1(HHZ

DR) → {HHZ

DR/F 2(HHZ

DR)} ⊗A (A/m2
Γ)

which (as one verifies easily — by using the fact that γ is the identity on HHZ

DR ⊗A k,
HHZ

DR ⊗ mΓ/m2
Γ) vanishes on mΓ · F 1(HHZ

DR) and maps into {HHZ

DR/F 2(HHZ

DR)} ⊗A

mΓ/m2
Γ). Thus, we obtain a morphism

κγ : F 1(HHZ

DR) ⊗ k → {HHZ

DR/F 2(HHZ

DR)} ⊗A mΓ/m2
Γ

which we would like to analyze by applying Theorem 2.4. If one reduces the com-
mutative diagram of Theorem 2.4 modulo m2

Γ, it follows that κγ may be computed
by applying the (logarithmic) connection ∇VHZ

L
on VHZ

L in the logarithmic tangent

direction
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∂

∂log(q
1

N·d )
· δΓ(γ)

— where we observe that

γ(q
1

N·d ) ≡ q
1

N·d + δΓ(γ) · q 1
N·d (mod m2

Γ)

(cf. the definition of δΓ, λΓ given above). That is to say, Applying ∇VHZ

L
in this

logarithmic tangent direction to F 1(HHZ

DR) ⊗ k = F 1(VHZ

L ) ⊗ k ⊆ VL ⊗ k and then
projecting via VHZ

L ⊗ k � VHZ

L /F 2(VHZ

L ) ⊗ k defines a morphism:

F 1(VHZ

L ) ⊗ k → VHZ

L /F 2(VHZ

L ) ⊗ mΓ/m2
Γ

On the other hand, by [Mzk3], Theorem 8.1 (i.e., the property which was called
“Griffiths semi-transversality” in loc. cit.), this morphism in fact maps into the
submodule F 3(VHZ

L )/F 2(VHZ

L ) ⊗ mΓ/m2
Γ. Moreover, (F 3/F 2)(VHZ

L ) is naturally
isomorphic to 1

2 ·F 1(VHZ

L )⊗ τ⊗2
EHZ

(where we write τEHZ
for the tangent bundle to

EHZ
at the origin 0EHZ

). In particular, we obtain that κγ also maps into F 3(−).
(Note that here we use that d ≥ dp ≥ dΓ ≥ 3.) Thus, by letting γ vary, we obtain
a homomorphism:

κΓ : Γ → HomOZ
(F 1(HHZ

DR) ⊗ k, (F 3/F 2)(HHZ

DR) ⊗ mΓ/m2
Γ) =

1
2
· τ⊗2

EHZ
⊗ mΓ/m2

Γ

arising from the Lagrangian Galois action, taken modulo m2
Γ, which, when regarded

as an element

κΓ ∈ Hom(Γ,
1
2
· τ⊗2

EHZ
⊗ mΓ/m2

Γ) = Hom(Γ,mΓ/m2
Γ) ⊗ 1

2
· τ⊗2

EHZ

is equal to the result of evaluating the geometric Kodaira-Spencer morphism of the
“crystalline theta object” (VHZ

L ,∇VHZ

L
) (cf. [Mzk3], Theorem 8.1)

κ∇ : (ΩZlog/A)∨ → 1
2
· τ⊗2

EHZ

on ∂

∂log(q
1

N·d )
∈ (ΩZlog/A)∨ and multiplying the result by δΓ. We summarize this

discussion as follows:

Corollary 2.7. (Relation to the Classical Geometric Kodaira-Spencer
Morphism) Let

Γ ⊆ Galm(Z/S)
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be a subgroup of order > 2. This subgroup Γ gives rise to a natural ideal mΓ ⊆
A (minimal among ideals modulo which Γ acts trivially on Z log) and a natural
morphism

δΓ : Γ → mΓ/m2
Γ

(defined by considering the action of Γ on q
1

N·d modulo m2
Γ). Then the morphism

κΓ : Γ → HomOZ
(F 1(HHZ

DR) ⊗ k, (F 3/F 2)(HHZ

DR) ⊗ mΓ/m2
Γ) =

1
2
· τ⊗2

EHZ
⊗ mΓ/m2

Γ

obtained purely from the Lagrangian Galois D-action of Γ on HHZ

DR (cf. Defi-
nition 2.3, Corollary 2.5) by restricting this action to F 1(HHZ

DR) and then reducing
modulo m2

Γ coincides with the morphism obtained by evaluating the “geometric
Kodaira-Spencer morphism of the crystalline theta object” (VHZ

L ,∇VHZ

L
)

(cf. [Mzk3], Theorem 8.1)

κ∇ : (ΩZlog/A)∨ → 1
2
· τ⊗2

EHZ

in the logarithmic tangent direction ∂

∂log(q
1

N·d )
∈ (ΩZlog/A)∨ and multiplying the

result by δΓ. Moreover, by [Mzk3], Theorem 8.1, this Kodaira-Spencer morphism
associated to the crystalline theta object coincides (up to a factor of 1

2 ) with the usual
Kodaira-Spencer morphism associated to the Gauss-Manin connection on the first de
Rham cohomology group. Thus, in summary, the arithmetic Kodaira-Spencer
morphism associated to the Lagrangian Galois D-action coincides modulo m2

Γ (and
up to a factor of 1

2) with the usual Kodaira-Spencer morphism.

Remark. Note, moreover, that the correspondence between the logarithmic tangent
direction ∂

∂log(q
1

N·d )
∈ (ΩZlog/A)∨ and the morphism δΓ is essentially the same as the

correspondence arising from Faltings’ theory of almost étale extensions between the
logarithmic tangent bundle of Z log and a certain Galois cohomology group (cf., e.g.,
[Mzk1], Chapter IX, §2, especially Theorem 2.6, for more details). In particular:

Corollary 2.7 shows that the analogy discussed in [Mzk1], Chap-
ter IX, between the (usual) geometric Kodaira-Spencer mor-
phism (cf. especially, [Mzk1], Chapter IX, Theorem 2.6) and the
arithmetic Kodaira-Spencer morphism is more than just
philosophy — it is rigorous mathematics!

(cf. also the discussion of [Mzk3], Theorem 6.2, in [Mzk3], §0).

Section 3: Global Multiplicative Subspaces

In this §, we show how to construct a sort of global analogue of the crucial
subgroup scheme “Gμ

Z ⊆ dEZ” of §2.2. The author believes that this construc-
tion indicates the proper approach to globalizing the local theory of §2 — cf. §4,
“Conclusion.”
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In this §, let us write MZ for the moduli stack (M1,0)Z (cf. §0, Notations
and Conventions); MZ ⊆ MZ for the open substack parametrizing smooth elliptic
curves. We denote base change to Q by a subscript Q. Also, let us write

ΠMQ

def= π1(MQ)

(for some choice of base-point).

Next, let us fix a prime number p. Thus, the p-power torsion points of the
tautological elliptic curve over MQ define a p-adic Tate module

F

— i.e., F is a free Zp-module of rank two equipped with a continuous ΠMQ
-action

ρF : ΠMQ
→ GL(F). Write

TQ → MQ

for the profinite étale covering defined by the subgroup Ker(ρF ) ⊆ ΠMQ
. Since ρF is

surjective (cf., e.g., [Shi], Theorem 6.23, together with the fact that the cyclotomic
character Gal(Q/Q) → Zp

× is surjective), it follows that TQ → MQ is Galois, with
Galois group

Gal(TQ/MQ) ∼= GL2(Zp)

(where the isomorphism is determined by a choice of Zp-basis for F). Write

T Z → MZ

for the normalization of MZ in TQ; TZ
def= T Z ×MZ

MZ. Also, in the following dis-
cussion, we will denote the p-adic formal schemes (or stacks) defined by p-adically
completing various schemes (or stacks) by means of a superscript “∧.”

Now note that the natural ΠMQ
-actions on T̂ Z and F define a natural ΠMQ

-
action on

O
�T Z

⊗Zp
F

(which we regard as a coherent sheaf on T̂ Z). Let us write ωE for the line bun-
dle on MZ defined by the cotangent bundle at the origin of the tautological log
elliptic curve over MZ. Then we recall the following result, which is essentially an
immediate corollary of the p-adic Hodge theory of elliptic curves:
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Theorem 3.1. (Global Multiplicative Subspace) There is a natural ΠMQ
-

equivariant morphism
ψω : O

�T Z

⊗Zp
F → ωE |�T Z

whose image contains (1 − ζp) · ωE |�T Z

, where ζp is a primitive p-th root of unity.

Moreover, away from the supersingular points of T Z⊗Fp, this morphism is a surjec-
tion, and (in a formal neighborhood of infinity) its kernel is the subspace defined by
the multiplicative subgroup schemes “Gμ

Z ⊆ dEZ” (cf. §2.2) where we take d
def= pn,

n → ∞.

Proof. The morphism ψω is what is usually referred to in p-adic Hodge theory as
the p-adic period map. There are many ways to construct the p-adic period map.
Over the smooth locus MZ, one way to construct the period map (cf. [Mzk3], §2,
the Remark following the proof of Theorem 2.2) is to use the canonical section
(defined modulo pn — cf. [Mzk3], §1, the discussion following Lemma 1.1 for more
details on this canonical section)

κH : H ⊗ (Z/pnZ) → E† ⊗ (Z/pnZ)

of the universal extension E† → E (where E → MZ is the tautological elliptic
curve) over the covering H (def= E) → E of E given by multiplication by pn (where
we let n → ∞). By looking at “fibers (of H, E†) over the origin of E,” we thus
see that κH determines a homomorphism from the pn-torsion points of E|

�TZ
, i.e., in

particular, from F ⊗ (Z/pnZ) ↪→ E(T̂Z), to ωE ⊗ (Z/pnZ)|
�TZ

, as desired. Note that
although only the smooth case is discussed in loc. cit., one verifies immediately
that this approach may be extended over MZ (by using the canonical section of
the universal extension near infinity). Letting n → ∞ and tensoring over Zp with
O
�T Z

thus completes the construction of ψω.

The remaining statements concerning the various properties of ψω may be
verified by using another approach to constructing the p-adic period map, which is
discussed in [Mzk1], Chapter IX, §2. This approach has the slight disadvantage that
it is not immediately clear that the resulting period map is defined over T̂ Z (i.e.,

a priori, it is only defined over locally constructed “R̂’s”). Nevertheless, one may
check easily (by working over the ordinary locus) that these two approaches yield
the same period map (cf. [Mzk3], §2, the Remark following the proof of Theorem
2.2). On the other hand, the approach of [Mzk1], Chapter IX, §2, has the advantage
that it makes it clear that the morphism ψω : O

�T Z

⊗Zp
F → ωE |�T Z

in question is

the composite (at least locally on T̂ Z, but this is sufficient for our purposes) of a
morphism — which we shall denote ψ1 — from O

�T Z

⊗Zp
F to a certain rank two

vector bundle on T̂ Z, followed by a surjection — which we shall denote ψ2 — from
this vector bundle onto the line bundle ωE |�T Z

(cf. the morphism “ΨZp
” — or,

more precisely, its dual — of [Mzk1], Chapter IX, Theorem 2.5). Moreover, the
determinant of ψ1 is equal to 1− ζp times a unit (cf. [Mzk1], Chapter IX, Theorem
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2.5, as well as the proof of this theorem). On the other hand, since the range
of the morphism ψω is a line bundle, it follows that the image of ψω determines
an ideal J ⊆ O

�T Z

with the property that det(ψ1) vanishes modulo J . Thus, we
conclude that 1 − ζp ∈ J , as desired. Finally, the assertions of Theorem 3.1 over
the ordinary locus and near infinity follow from the theory of either [Mzk3], §2, or
[Mzk1], Chapter IX, §2. This completes the proof ©

Remark. Usually, in the context of p-adic Hodge theory, one constructs the p-adic
period map not over global bases such as MZ, but over p-adic bases, such as MZp

. It
is immediate, however, from the first approach discussed in the proof of Theorem 3.1
to constructing the p-adic period map that exactly the same construction works over
MZ and gives rise to a morphism that is equivariant with respect to ΠMQ

= π1(MQ)
(i.e., not just π1(MQp

)). (The author wishes to thank A. Tamagawa for remarks
that led to a simplification of the proof of Theorem 3.1.)

Remark. Thus, in particular, we obtain that if E is a log elliptic curve over Z, then
(by pull-back via the classifying morphism to M1,0 defined by E) the morphism ψω

defines a Gal(Q/Q)-equivariant morphism:

ψω(E) : Tp(E) ⊗Zp
O
�

Q
→ ωE ⊗OF

O
�

Q

(where Tp(E) is the p-adic Tate module of E; Q is an algebraic closure of Q; and
the “hat” denotes p-adic completion) whose image contains p · ωE (cf. Theorems
3.1, 3.2). In particular, since the completions of Q at each of its primes over p are
all valuation rings, we thus conclude that ψω(E) defines a Gal(Q/Q)-equivariant
surjection

ψ′
ω(E) : Tp(E) ⊗Zp

O
�

Q
→ ω′

E

(where ω′
E ⊆ ωE ⊗Z O

�

Q
is a free O

�

Q
-submodule of rank one) which coincides with

ψω(E) over Qp. Thus, the kernel of ψ′
ω(E) may be regarded as a global generalization

of the multiplicative subspace “Zp(1) ⊆ Tp(E)” of the Tate curve E over Z[[q]].

Section 4: The Group Tensor Product

In this §, we present a very general construction that applies to arbitrary com-
mutative group schemes, but which will be of fundamental importance for motivat-
ing the theory that we wish to pursue in subsequent papers.

We begin with the following definition, which is motivated by infinite abelian
group theory (cf. [Fchs], p. 94):
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Definition 4.1. We shall call a torsion-free abelian group R ind-free if every finite
subset of R is contained in a finitely generated direct summand of R.

Remark. It is known that every countable subgroup of an ind-free group is free (cf.
[Fchs], pp. 93-94). Thus, in particular, every countable ind-free group is free. On
the other hand, groups such as an infinite direct product of infinite cyclic groups
are ind-free, but not free (cf. [Fchs], p. 94). The reason that we wish to consider
ind-free groups is because we wish to allow just such groups — i.e., such as the
additive group of power series Z[[q]] — in the theory to be developed in the present
and subsequent papers.

Now let S be a noetherian scheme, and G a commutative group scheme over
S. (Note: we do not necessarily assume that G is smooth or of locally of finite type
over S.) Thus, G defines a functor

T �→ G(T )

from the category of S-schemes (such as T → S) to the category of abelian groups.

Next, let us assume that we are given an ind-free Z-module R (cf. Definition
4.1). Then let us consider the functor

T �→ G(T ) ⊗Z R

— which we denote by G
gp
⊗ R — from the category of S-schemes (such as T → S)

to the category of abelian groups.

Definition 4.2. We shall refer to as an ind-group scheme an inductive system
(indexed by a filtered set) of group schemes in which the transition morphisms are
all closed immersions.

Remark. Thus, a Barsotti-Tate group (e.g., the p-divisible group defined by an
abelian variety) is a typical example of an ind-group scheme. Note that it is im-
portant to assume that the transition morphisms are closed immersions. Indeed,
so long as one assumes this, taking the inverse limit of sheaves of functions on the
group schemes in the system gives rise to a sheaf of “functions on the ind-group
scheme” which surjects onto the sheaves of functions on each of the group schemes
in the system. If, on the other hand, one considers an inductive system such as

E → E → E → E → E → . . .

(where E is an elliptic curve, and all of the arrows are multiplication by some
positive integer d), then the inverse limit of the functions on the group schemes in
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the system contains only the constant functions. Thus, it is difficult to treat this
sort of inductive system as a single geometric object.

Proposition 4.3. This functor G
gp
⊗ R is representable by an ind-group scheme

over S, which, by abuse of notation, we also denote by G
gp
⊗ R. Moreover:

(1) G
gp
⊗ R is functorial with respect to G and R.

(2) If R is finitely generated, then G
gp
⊗ R is representable by a

(single) group scheme.

(3) If R and R′ are finitely generated free Z-modules, and R ↪→ R′

is a split injection, then the resulting arrow G
gp
⊗ R → G

gp
⊗ R′

is a closed immersion.

Proof. First, note that any ind-free R can be written as an inductive limit lim−→ Rj

of finitely generated free Z-submodules Rj (for j in some filtered index set J) such
that the injections Rj ↪→ R are split. Moreover, when j < j′ (so Rj ⊆ Rj′), the
fact that Rj ↪→ R is split implies that Rj ⊆ Rj′ is split. Thus, the representability

of G
gp
⊗ R (for a general ind-free R) by an ind-group scheme over S follows formally

from assertions (1), (2), (3).

Let us prove (2), (3). Thus, for the remainder of this paragraph, let us assume
that R is finitely generated (and free). But then R is (noncanonically) isomorphic

to Zr (for some positive integer r), so G
gp
⊗ R can be represented by the group

scheme G ×S G ×S . . . ×S G (the fibered product over S of r copies of G). This
proves (2). Since any split injection Zr ↪→ Zr′

is isomorphic to the injection Zr =
Zr × {0} ↪→ Zr × Zr′−r = Zr′

, assertion (3) follows immediately.

Finally, assertion (1) follows immediately from the functorial definition of

G
gp
⊗ R. ©

Definition 4.4. By abuse of notation, we denote the ind-group scheme of Propo-

sition 4.3 by G
gp
⊗ R, and refer to this ind-group scheme as the group tensor product

of G with R.

Remark. We shall principally be interested in the case where G is an elliptic curve
E, or its universal extension equipped with some integral structure — e.g., E∗

[d],et

— and R is a ring closely related to the base scheme over which E is defined —
e.g., R = OF (the ring of integers) for some number field F .
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Remark. Note that automorphisms of the module R induce automomorphisms of

G
gp
⊗ R. Moreover, if, for instance, R is finitely generated, and G is equipped with

an ample line bundle L, then any choice of basis e1, . . . , er of R determines an

isomorphism G
gp
⊗ R ∼=

∏r
j=1 G, hence (by taking the tensor product of the pull-

backs of L relative to each of the factors in the product), a natural choice of ample

line bundle on G
gp
⊗ R. This ample line bundle, however, depends on the choice

of basis, i.e., it will not be preserved in general by automorphisms of R. Thus, in
summary:

Although (for, say, finitely generated R) the correspondence G �→
G

gp
⊗ R defines a natural functor from group schemes to group

schemes, it does not define a natural functor from polarized group
schemes to polarized group schemes.

Since, in Hodge-Arakelov theory, it is of fundamental importance to work with
polarized group schemes, the rather superficial general nonsense of the present § will
not be sufficient for working with group tensored elliptic curves in Hodge-Arakelov
theory. The resolution of this technical issue forms one of the main obstacles relative
to developing a theory of the sort that the author envisions for globalizing the theory
of §2.

One important property of the group tensor product is the following:

Proposition 4.5. Let d ≥ 1 be an integer, and write dG ⊆ G (respectively,

d(G
gp
⊗ R) ⊆ G

gp
⊗ R) for the kernel of the morphism [d] : G → G (respectively, [d] :

G
gp
⊗ R → G

gp
⊗ R), i.e., multiplication by d. Then we have a natural isomorphism:

d(G
gp
⊗ R) ∼= (dG) ⊗Z/dZ (R/d · R)

Proof. This follows immediately from the functorial definition of G
gp
⊗ R. ©

Conclusion:

If we formally combine Proposition 4.5 with the content of the second Remark
following Theorem 3.1, we thus obtain the following:

If E is a log elliptic curve over Z; d = pr (where p is a prime
number, and r ≥ 1 is an integer); and R

def= OK is the ring
of integers of some finite Galois extension K of Q (which may
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depend on the choice of d), then the rank 2 (R/dR)-module of

d-torsion points of E
gp
⊗ R contains a rank 1 submodule stabilized

by Gal(Q/Q) and which coincides with the usual “multiplicative
subspace” at primes of bad (multiplicative) reduction.

In particular, this conclusion suggests that if we could somehow develop a “Hodge-

Arakelov theory for objects such as E
gp
⊗ R,” then we should be able to define for

such objects a Lagrangian Galois-theoretic Kodaira-Spencer morphism which is free
of Gaussian poles (cf. Corollary 2.5). In subsequent papers, it is the hope of the
author to develop just such a theory.
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